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Abstract: Many robotics tasks require a robot to manipulate objects into a desired
configuration. For example, we might want a robot to align a gear onto an axle
or turn a key into a lock. These tasks present considerable difficulties for rein-
forcement learning approaches, since the natural reward function for these tasks
is sparse and prohibitive amounts of exploration are required to receive it. Past
approaches tackle these problems by manually designing a task-specific reward
shaping function to help guide the learning. We propose a method to learn these
tasks without requiring any prior task knowledge other than obtaining a single
state in which the task is achieved. The robot is trained “backwards,” gradually
learning to reach the goal from a set of starting positions increasingly far from the
goal. Our method automatically generates a curriculum of starting positions that
adapts to the agent’s performance, leading to efficient training on such tasks. We
demonstrate our approach on difficult fine-grained manipulation tasks not solvable
by state of the art reinforcement learning methods.

Keywords: Reinforcement Learning, Robotic Manipulation, Automatic Curricu-
lum Generation

1 Introduction

Reinforcement Learning (RL) is a powerful learning technique for training an agent to optimize a
reward function. Reinforcement learning has been demonstrated on complex tasks such as locomo-
tion [1], Atari games [2], racing games [3], and other robotic manipulation tasks [4].

However, there are many tasks for which the reward function is either sparse or non-convex, which
can create difficulties for learning-based approaches. For example, suppose a robot needs to learn to
put a ring onto a peg, using a reward function based on the distance between the ring and the bottom
of the peg. Such a task will be difficult to solve directly with reinforcement learning; the agent will
likely learn a locally optimal policy that places the ring next to the bottom of the peg, and the agent
will never learn that it needs to first lift the ring over the top of the peg. There are many such tasks
in which the reward function is either sparse or non-convex, leading to difficulties for reinforcement
learning.

One possible approach to such tasks is to engineer a more complex reward function that can help
guide the policy towards the correct solution. Such “reward engineering” can be achieved using



reward shaping [5]. However, designing an efficient shaping function is often time-consuming and
requires human effort and experimentation to find the correct shaping function for each task.

We avoid “reward engineering” by using a key insight: many robotics tasks are easier to undo than
they are to perform directly. For example, in the above example, if a ring is already on a peg, it is
simple to pull the ring off of the peg, even though it was hard to discover how to place the ring onto
the peg directly. For such tasks, the set of states that achieve the task is relatively small, so they are
hard to discover directly. However, for an agent placed into this set of successful states, it can easily
move out of this set to other states in the environment. Many fine-grained manipulation tasks have
this property.

We take advantage of this insight to develop a “backwards learning” approach for solving such
difficult manipulation tasks. We first place the robot into a state that successfully achieves the task.
Then, the robot learns “backwards” - it moves itself out of this state, and then discovers how to
return to the goal state. Initially, the policy can only reach the goal from states that are nearby,
but gradually, the policy learns how to achieve the task from increasingly distant initial positions.
This method of learning backwards is reminiscent of dynamic programming, in which a problem is
divided into subproblems that are sometimes solved in reverse order.

In this paper, we present an efficient and principled framework for performing such “reverse learn-
ing.” Our method automatically generates a curriculum of initial positions for achieving the task.
This curriculum is learned automatically by observing the performance of our agent at each step of
the training process. Our method requires no prior knowledge of the task other than providing a
single successful state that achieves the task.

The contributions of this paper include:
• A novel problem definition of finding the optimal start-state distribution for solving tasks

with sparse reward functions

• A novel and practical approach for computing an initial state distribution that varies over
the course of training, leading to an automatic curriculum of initial state distributions

• A demonstration that such an approach works to solve difficult tasks for fine-grained robotic
manipulation

2 Related Work

Curriculum-based approaches with manually designed schedules have been explored in supervised
learning [6, 7, 8, 9] to split particularly complex tasks into smaller, easier-to-solve sub-problems.
One particular type of curriculum learning explicitly enables the learner to reject examples which it
currently considers too hard [10, 11]. This type of adaptive curriculum has mainly been applied for
supervised tasks and most curriculum approaches in reinforcement learning still rely on pre-specified
task sequences [12].

In contrast, we automatically create a curriculum by discovering which tasks are easy or difficult
for a given policy by inverting the problem and training from successively harder initial positions.
Our approach is similar to work done by Tedrake et al. [13], which sequentially composes locally
stabilizing controllers by growing a tree of stabilized trajectories backwards from the goal state.
This can be viewed as a “funnel” which takes initial states to the goal state via a series of locally
valid policies [14].

Other recent work has proposed using a given baseline performance for several tasks to gauge which
tasks are the hardest and require more training [15]. However, this framework can only handle finite
sets of tasks and requires dense rewards. Our method trains a policy that generalizes to a set of
continuously parameterized tasks and is shown to perform well even under sparse rewards by not
allocating training effort to tasks that are too hard for the current performance of the agent.

Finally, an interesting asymmetric self-play strategy has recently been proposed that is concurrent
to our work [16]. Contrary to our approach,which is designed to generate multiple training tasks
at the right level of difficulty, the asymmetric component of their method can lead to biased explo-
ration [16]. Furthermore, the approach is designed as an exploration bonus for a single target task;
in contrast, we define a new problem of efficiently optimizing a policy across a range of starting
positions.
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The idea of directly influencing state distributions to accelerate training has been addressed in the
past. Kakade and Langford [17] introduce the idea of a ‘restart distribution’ from which new states
are drawn, which when chosen well can optimize for faster policy convergence. A similar idea by
Kearns et al. [18] explores the of using a ‘generative model’ - a type of simulator - which enables
computing new states. Our work is in similar spirit of finding a distribution for initial states that
accelerates training progress, which is done by finding states from which the current policy has a
chance of directly solving the task but does not always succeed.

In addition, the idea was explored in the field of motion planning with approaches to extend planning
to compute bidirectional search trees and grow an additional search tree from the goal position
has been successfully applied in sampling-based planning literature to address high-dimensional
configuration spaces and cluttered environments [19, 20, 21]. In particular, the approach has been
shown to be beneficial given environments with non-convex guiding heuristics [21]. Initial position
generation relates to these approaches as we address similar challenges with non-convexity in the
dense rewards or even the limitation to sparse feedback. However, our goal is determining a general
policy to reach the goal from all possible initial positions instead of one particular start-end point
configuration without access to the kinematics or dynamics model of the environment.

3 Problem Definition

We consider the general problem of learning a policy that will move a system into a specified goal-
space, from any starting state sampled from a given distribution. In this section we first briefly
introduce the general reinforcement learning framework and then we will formally define our prob-
lem statement.

3.1 Preliminaries

We define a discrete-time finite-horizon discounted Markov decision process (MDP) by a tupleM =
(S,A,P, r, ρ0, T ), in which S is a state set, A an action set, P : S × A × S → R+ is a transition
probability distribution, r : S × A → R is a bounded reward function, ρ0 : S → R+ is an initial
state distribution, and T is the horizon. Our aim is to learn a stochastic policy πθ : S × A → R+

parametrized by θ. The objective is to maximize its expected return, ηρ0(πθ) = Es0∼ρ0R(π, s0)

with the expected reward from s0 being R(π, s0) := Eτ |s0 [
∑T
t=0 r(st, at)], where τ = (s0, a0, . . .)

denotes the whole trajectory, at ∼ πθ(at|st), and st+1 ∼ P(st+1|st, at). Reinforcement Learning
tackles this problem with methods like policy search, in which trajectories are iteratively collected
and used to improve the current policy [22, 23, 24].

3.2 Goal-oriented tasks

We consider the general problem of reaching a certain goal space Sg ⊂ S from any starting position
in S0 ⊂ S. This simple, high-level description can be translated into an MDP without further do-
main knowledge by using a binary reward function r(st) = 1

{
st ∈ Sg

}
and a uniform distribution

over the initial states ρ0 = Unif(S0). We terminate the episode when the goal is reached. This
implies that the returnR(π, s0) associated to every starting state s0 is the probability of reaching the
goal at some time-step t ∈ 0 . . . T .

R(π, s0) = Eπ(·|st)1
{ T⋃
t=0

st ∈ Sg|s0
}

= P
( T⋃
t=0

st ∈ Sg
∣∣∣ π, s0) (1)

As advocated by Rajeswaran et al. [25], it is important to be able to train an agent to achieve the
goal from a large set of initial states S0. An agent trained in this way would be much more robust
than an agent that is trained from just a single starting position, as it could recover from undesired
deviations of the intended trajectory. Therefore, we will choose our set of initial states S0 to be a
wide area around the goal. For example, in the robotic fine-grained manipulation tasks considered
in this paper, we want to insert a key into a key-hole or a ring onto a peg, regardless of the initial
configuration of the robot or object (within a reasonable radius around the goal).

Our goal space for these tasks will be defined to be a small set of states around the desired con-
figuration (e.g. key in the key-hole or ring on the peg). As discussed above, the sparsity of this
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reward function makes learning difficult. If a naive dense reward function is defined for these tasks
(such as measuring the distance between the ring and the bottom of the peg), this reward function
will likely lead to a locally optimal learned policy, such as learning to push the ring against the side
of the peg. To make those methods work, reward shaping [5] could be used, but it is difficult and
time-consuming to engineer an effectively shaped reward function for each task. In the following
subsection we introduce three assumptions, and the rest of the paper describes how we can leverage
these assumptions to efficiently learn to achieve complex goal-oriented tasks directly from sparse
reward functions.

3.3 Adapting the initial state distribution

In this work we study how to exploit three assumptions that hold true in a wide range of practical
learning problems (especially if learned in simulation):

Assumption 1 We can arbitrarily reset the agent into any start state s0 ∈ S0, allowing us to choose
the initial state of any trajectory.

Assumption 2 At least one state sg is provided such that sg ∈ Sg .

Assumption 3 The Markov Chain induced by taking uniformly sampled random actions needs to
have a communication class including all starting states S0 and the given goal state sg (there is a
non-zero probability of traversing between all states in this Markov chain).

The first assumption has been considered previously (e.g. access to a generative model in Kearns
et al. [18]) and is deemed to be a considerably weaker assumption than having access to the full
transition model of the MDP. For the second assumption, note that we only assume access to one
state sg in the goal region; we do not require a description of the full region nor trajectories leading
to it. Finally, Assumption 3 ensures that the goal can be reached from any of the relevant starting
positions, and that those starting positions can also be reached from the goal; this assumption is
satisfied by many robotic problems of interest, as long as there are no major irreversibilities in the
system.

The use of Assumption 1 to improve the learning in MDPs that require large exploration has already
been demonstrated by Kakade and Langford [17]. Nevertheless, they do not propose a concrete
procedure to choose a distribution ρ from which to sample the initial states in order to maximally
improve on the objective in (1). In the next sections we introduce a method to continuously adapt the
initial state distribution to the current performance of the policy. This approach can be understood
as automatically building a curriculum of initial state distributions. We demonstrate the value of this
method for challenging robotic manipulation tasks.

4 Methodology

In a wide range of goal-oriented RL problems, reaching the goal from an overwhelming majority of
starting states in S0 requires a prohibitive amount of on-policy or undirected exploration. On the
other hand, it is usually easy for the learning agent (i.e. our current policy πi) to reach the goal Sg
from states nearby a goal state sg . Therefore, learning from these states will be fast because the
agent will perceive a strong signal, even under the indicator reward introduced in Section 3.2. Once
the agent knows how to reach the goal from these nearby states, it can train from even further states
and bootstrap its already acquired knowledge. This backwards expansion is inspired from classical
RL methods like Value Iteration or Policy Iteration [26], although in our case we do not assume
knowledge of the transition model and our environments have high-dimensional continuous action-
state spaces. In the following subsections we propose a method that leverages the Assumptions from
the previous section and the above reasoning to automatically adapt the starting state distribution,
generating a curriculum of starting state distributions that can be used to tackle problems unsolvable
by standard RL methods.

4.1 Policy Optimization with modified start state distribution

Policy gradient strategies are well suited for robotic tasks with continuous and high dimensional
action-spaces [27]. In policy gradient algorithms, at every iteration i the policy is improved based
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on the reward collected by executing the current policy πi. Nevertheless, applying policy gradients
directly on the original MDP does very poorly in our challenging manipulation tasks because the
goal might never be reached from the starting positions in S0. In such cases, no reward will be
received, and the policy will not improve. Therefore, we propose to adapt a distribution ρi from
which starting states s0 are sampled to train policy πi. Based on the observation above, to maximize
the learning signal we should expand this distribution backwards from the goal, based on the current
performance of the policy πi.

More concretely and analogously to Held et al. [28], we postulate that in goal-oriented environments,
a strong learning signal is obtained when training from initial states s0 ∼ ρi from which the agent
reaches the goal sometimes, but not always. We call these starting states “good” states. More
formally, at training iteration i, we would like to sample from ρi = Unif(S0

i ) where S0
i = {s0 :

Rmin < R(πi, s0) < Rmax}. The hyper-parameters Rmin and Rmax are easy to tune due to their
interpretation as bounds on the probability of success, derived from Eq. (1). Unfortunately, sampling
uniformly from S0

i is intractable because no closed-form description of S0
i is provided. Nevertheless,

at least at the beginning of training, states nearby a goal state sg (provided by Assumption 2) are
more likely to be in S0

i . Then, after some iterations of training from those starting states, some will
be completely mastered (i.e. they will no longer be in S0

i+1), but others will still need more training.
To find more “good” states, we follow the same reasoning: the states nearby these remaining s ∈
S0
i+1 are likely to also be in S0

i+1.

Algorithm 1: Policy Training
Input : Policy π0, goal state sg ∈ Sg , ρ0
Output: Policy πN
startsold ← [sg];
starts, rews← [sg], [1];
for i← 1 to N − 1 do

starts← SampleNearby(starts, mnew);
starts.append[sample(startsold,mold)];
ρi ← Unif(starts);
πi,+1, rews← train pol(ρi, πi−1);
starts← select(starts, rews);
startsold.append[starts];
evaluate(πi+1, ρ0);

end

Our generic algorithm that implements
this procedure is detailed in Algorithm 1.
train pol applies the RL algorithm of
choice; in our case we use 5 iterations
of TRPO [29]. select(starts, rews)
selects a subset of the previously used
start states, based on the rewards rews
obtained by the policy πi+1 . Techni-
cally, to check which of the states s0 ∈
starts is in S0

i we should execute some
trajectories from each of those states to
estimate R(s0, πi+1), but this consider-
ably increases the sample complexity. In-
stead, we use the rollouts collected dur-
ing train pol, which is found to give a
good enough estimate and not drastically

decrease learning performance of the overall algorithm. Our candidate for the SampleNearby
procedure is described in the next subsection. We also maintain a replay buffer startsold of previ-
ously considered start states from which we uniformly sample mold candidate start states at every
iteration. As already shown by Held et al. [28], this is an important feature to avoid catastrophic
forgetting.

4.2 Sampling “nearby” feasible states

Procedure 2: SampleNearby
Input : starts, covariance Σ, TB , M , mnew

Output: startsnew
while len(starts) < M do

s0 ∼ Unif(starts);
for t← 1 to TB do

at+1 = at + εt with εt ∼ N (0,Σ);
st+1 ∼ P(st+1|st, at);
starts.append(st+1);

end
end
startsnew ← sample(starts,mnew)

For robotic manipulation tasks with complex
contacts and constraints, applying noise in
state-space s′ = s + ε, ε ∼ N may yield
many infeasible start positions s′. For exam-
ple, even small random perturbations of the
joint angles of a seven degree-of-freedom
arm generate large modifications to the end-
effector position, potentially placing it in an
infeasible state that intersects with surround-
ing objects. For this reason, the concept
of “nearby” states might be unrelated to the
Euclidean distance ‖s′ − s‖2 between these
states. Instead, we have to understand prox-

imity in terms of how likely it is to reach one state from the other by taking actions in the MDP.
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Therefore, we choose to generate new states s′ from a certain seed state s by applying noise in action
space. This means we use Assumption 1 to reset the system to state s, and from there we execute
short “Brownian motion” rollouts of horizon TB taking actions at+1 = at + εt with εt ∼ N (0,Σ).
This method of generating “nearby” states is detailed in Procedure 2. The total sampled states
M should be large enough such that the mnew desired states startsnew, obtained by subsampling,
extend in all directions around the input states starts. All states visited during the rollouts are
guaranteed to be feasible and can then be used as starting states to keep training the policy.

The general method described above keeps expanding the region of the state-space from which the
policy can reach the goal reliably, sampling more heavily nearby the starting states that need more
training to be mastered and avoiding start states that are yet too far to receive any reward under
the current policy. Now, thanks to Assumption 3, the Brownian motion used to generate further
and further starting states will eventually reach all starting states in S0, and therefore our method
improves the metric ηρ0 .

5 Experimental Results

We investigate the following questions in our experiments:
• Does the performance of the policy on the target initial state distribution ρ0 improve by

training on distributions ρi growing from the goal?
• Does focusing the training on “good starts” speed up learning?
• Is Brownian motion a good way to generate ”good starts” from previous ”good starts”?

We use the below task settings to explore these questions. The hyperparameters used in our experi-
ments are described in the appendix.

Navigation in a maze: (Fig. 1a) A point-mass agent (in orange) must navigate to the goal position
(4, 4) at the end of a G-shaped maze (in red). The target initial state distribution from which we seek
to reach the goal is uniform over all feasible (x, y) positions in the maze.

Ring on Peg: (Fig. 1b) A 7 DOF robot must learn to place a “ring” (actually a square disk with a
hole in the middle) on top of a tight-fitting round peg. The task is complete when the ring is within
3 cm of the bottom of the 15 cm tall peg. The target initial state distribution from which we seek to
reach the goal is uniform over all feasible joint positions for which the center of the ring is within
40 cm of the bottom of the peg.

Key in hole: (Fig. 1c) A 7 DOF robot must learn to insert a key into a key-hole. The task is
completed when the distance between three reference points at the extremities of the key and its
corresponding targets is below 3cm. In order to reach the target, the robot must first insert the key at
a specific orientation, then rotate it 90 degrees clockwise, push forward, then rotate 90 degrees coun-
terclockwise. The target initial state distribution from which we seek to reach the goal is uniform
over all feasible joint positions such that the tip of the key is within 40 cm of key-hole.

(a) Point-mass maze task (b) Ring on Peg task (c) Key insertion task

Figure 1: Task images. Videos of the final performance obtained by our algorithm are available in
the website of the project: https://sites.google.com/view/startgeneration

5.1 Improve learning by modifying the initial state distribution

Trying to tackle the original MDP directly yields very poor success. In Figure 2, the Uniform
Sampling (baseline) red curves show the average return of policies learned with TRPO without
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modifying the initial state distribution. We see that the final average probability of reaching the goal
is around 2% for the key task and 10% for the ring task. These success probabilities correspond to
reliably reaching the goal only from very nearby positions: when the ring is already on the peg or
when the key is initialized very close to the final position. None of the learned policies can reliably
reach the goal from more distant starting positions. On the other hand, the two other learning curves
presented correspond to methods that modify the initial state distribution on which the policy is
trained. The training algorithm itself (as well as its hyperparameters) and the evaluation metric are
the same.

(a) Ring on Peg task (b) Key insertion task

Figure 2: Learning curves for the robotics tasks (mean and standard deviation over 5 random seeds).

In the case of the maze navigation task, we also observe that applying TRPO directly on the original
MDP may perform very poorly. Indeed, the Unform Sampling red learning curve in Figure 3 has a
very high variance because some policies only learn how to perform well from one side of the goal.
A more thorough analysis of this behavior is provided in the Appendix. Our methods have a more
reliable learning. We conclude that training on a different initial state distribution ρi can improve
training on the original MDP with a fixed initial state distribution ρ0.

Figure 3: Learning curves for the maze tasks (mean and standard deviation over 5 random seeds).

5.2 Improve learning by training on “good” starts

In Figures 2 and 3 we see how applying our Algorithm 1 to modify the initial state distribution
considerably improves learning (Brownian on Good States, in green) and final performance on the
original MDP. Two elements are involved in this improvement: first, the backwards expansion from
the goal, and second, the concentration of training efforts on “good” starts. To test the relevance
of this second element, we ablate our method by running our SampleNearby Procedure 2 on all
states from which the policy was trained in the previous iteration. In other words, the select func-
tion in Algorithm 1 is replaced by the identity, returning all starts independently of the rewards rews
they obtained during the last training iteration. The resulting algorithm performance is shown as the
Brownian from All Starts blue curve in Figures 2 and 3. As expected, this method is still better than
not modifying the initial state distribution but has a slower learning than running SampleNearby
around the estimated good starts.
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As mentioned in Sec. 4, we would ideally like to sample initial states from ρi = Unif(S0
i ) where

S0
i = {s0 : Rmin < R(πi, s0) < Rmax}. Unfortunately, sampling directly from S0

i is infeasible
because no closed-form description of S0

i is provided. Instead, we evaluate states in S0
i−1, and we

use Brownian motion to find nearby states, to approximate S0
i . However, these states form only a

subset of all states in S0
i .

We can evaluate the amount of error in this approximation by exhaustive sampling states in the lower
dimensional maze task. To do so, at every iteration we can samples states s0 uniformly from the
state-space S, empirically estimates their return R(s0, πi), and rejects the ones that are not in the set
S0
i = {s0 : Rmin < R(πi, s0) < Rmax}. This exhaustive sampling method is an order of magnitude

more expensive in terms of sample complexity, so it would not be of practical use; however, we can
see the results of such an approach in Fig. 3, called “Oracle (rejection sampling)”; training on states
sampled in such a manner improves further the learning rate and final performance. Thus we can see
that our approximation of using states in S0

i−1 to find states in S0
i leads to some loss in performance,

at the benefit of a greatly reduced computation time.

Finally, we compare to another way of generating start positions based on the asymmetric self-play
method of Sukhbaatar et al. [30]. The basic idea is to train another policy, “Alice” that proposes
start positions to the learning policy, “Bob”. As can be seen, this method performs very poorly in
the maze task, and our investigation shows that “Alice” often gets stuck in a local optimum, leading
to poor start states suggestions for “Bob”. A commonly observed failure case is “Bob” suddenly
learning how to reach the goal from a large part of the state-space, making it very hard for Alice to
find new positions that are hard for Bob. In the original paper, the method was demonstrated only
on discrete action spaces, in which a multi-modal distribution for Alice can be maintained; even in
such settings, the authors observed that Alice can easily get stuck in local optima. This problem is
exacerbated when moving to continuous action spaces defined by a unimodal Gaussian distribution.

5.3 Brownian motion to generate “nearby” states

Here we evaluate if running our Procedure 2 SampleNearby around “good” starts yields more
good starts than running SampleNearby from all previously visited states. This can clearly be
seen in Fig. 4a for the ring task. We also observe in Fig. 4b that running SampleNearby on all
previous start states generates more starting states with no reward. This is the cause of the decrease
in performance of this approach shown in Figures 2 and 3.

(a) Fraction of Good Starts used during training (b) Fraction of Low Reward Starts used during
training

Figure 4: Fraction of Good Starts and Low Reward Starts generated

6 Conclusions and Future Directions

We propose a method to automatically adapt the initial state distribution on which an agent is trained,
such that the performance on the original problem is efficiently optimized. We leverage three as-
sumptions commonly satisfied in simulated tasks to tackle hard goal-oriented problems that state of
the art RL methods cannot solve.

A limitation of the current approach is that it generates start states that grow from a single goal
uniformly outwards, until they cover the original initial state distribution Unif(S0). Nevertheless, if
the target set of initial states S0 is far from the goal and we have some prior knowledge, it would
be interesting to bias the generated start distributions ρi towards the desired start distribution. A
promising future line of work is to combine the present automatic curriculum based on start state
generation with goal generation [28], similar to classical results in planning [31].
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It can be observed in the videos of our final policy for the manipulation tasks that the agent has
learned to exploit the contacts instead of avoiding them. Therefore, the learning based aspect of the
presented method has a huge potential to tackle problems that classical motion planning algorithms
could struggle with, such as environments with non-rigid objects or with uncertainties in the the
task geometric parameters. We also leave as future work to combine our curriculum-generation
approach with methods like domain randomization [32] to obtain policies that are transferable to the
real world.
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A Experiment Implementation Details

A.1 Hyperparameters

Below we describe the hyperparemeters used for our method. Each iteration, we generate new
start states, (as described in Section 4.2 and Procedure 2), which we append to the “seed states”
until we have a total of M = 10000 start states. We then subsample these down to mnew = 200
new start states. These are appended with 100 sampled old start states (as described in Section 4.1
and Procedure 1), and these states are used to initialize our agent when we train our policy. The
“Brownian motion” rollouts have a horizon of TB = 50 timesteps, and are obtained by taking random
actions sampled from a standard normal distribution (e.g. a 0-mean Guassian with a variance of 1 in
each action dimension).

For our method as well as the baselines, we train the policy with TRPO [29], implemented with
rllab [33]. We use a TRPO step-size of 0.01 and a linear baseline. For all tasks, we train with a batch
size of 20,000 timesteps. All experiments use a maximum horizon of T = 500 timesteps, and the
episode ends as soon as the agent reaches a goal state. We define the goal set Sg to be a ball around
the goal state, in which the ball has a radius of 0.03 m for the ring and key tasks and 0.3 m for the
maze task. In our definition of S0

i , we use Rmin = 0.1 and Rmax = 0.9. We use a discount factor
γ = 0.995 for the optimization, in order to encourage the policy to reach the goal as fast as possible.

A.2 Performance metric

The tasks are described as being able to reach the specified goal from any feasible starting position
within a certain radius of that goal: s0 ∈ S0. For the maze navigation task this is straight forward as
the designer gives a concrete description of the feasible (x, y) space, so we can directly sample from
it. Nevertheless, it is not trivial to uniformly sample from such feasible starting positions for the
robotics tasks. In particular, the state space is in joints angles and angular velocities of the 7 DOF
arm, but the physical constraints of these contact-rich environments are given by the geometries of
the task. Therefore, uniformly sampling from the angular bounds mostly yields infeasible states,
with some part of the arm or the end-effector intersecting with other objects in the scene. In order to
approximate uniformly sampling from S0, we use Assumption 2, giving a feasible goal state sg . We
simply run our SampleNearby procedure initialized with starts = [sg] with a very large M and
long time horizons TB . This large aggregated state data-set is saved and samples from it are used to
evaluate the performance of our algorithm. Figures 5a and 5b show six sampled starting states from
the data sets used to evaluate the ring task and the key task. These data sets are too large to include
in the supplementary material but will be available upon publication for future reproducibility and
benchmarking.

(a) Uniformly sampled start positions for ring task. There are 39,530 states in the data-set, of which 5,660
have the ring with its hole already in the peg

(b) Uniformly sampled start positions for key task. There are 544,575 states in the data-set, of which 120,784
have the key somewhere inside the key-hole

Figure 5: Samples from the test distribution for the manipulation tasks
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Given the quasi-static nature of the tasks considered, we generate only initial angle positions, and
we set all initial velocities to zero. Generating initial velocities is a fairly simple extension of our
approach that we leave for future work.

B Other methods

B.1 Distance reward shaping

Although our policies are trained with sparse rewards, the policy optimization steps can use any kind
of reward shaping available. In the the robotics tasks considered in this paper, the goal is defined
in terms of a reference state, and hence it seems natural to try to use the distance to this state as
a reward. However, we have found that this modification does not actually improve training. For
the starting states near to the goal, the policy can learn to reach the goal simply from the indicator
reward introduced in Section 3.2. For the states that are further away, the distance to the goal is
actually not a useful metric to guide the policy; hence, the distance reward actually guides the policy
updates towards a suboptimal local optimum, leading to poor performance.

In Fig. 6 we see that the ring task is not much affected by the additional reward, whereas the key
task suffers considerably if this reward is added.

(a) Ring on Peg task (b) Key insertion task

Figure 6: Learning curves for the robotics manipulation tasks

B.2 Failure cases of Uniform Sampling for maze navigation

In the case of the maze navigation task, we observe that applying TRPO directly on the original
MDP incures in very high variance across learning curves. We have observed that some policies
only learned how to perform well from a certain side of the goal. The reason for this is that our
learning algorithm (TRPO) is a batch on-policy method; therefore, at the beginning of learning,
uniformly sampling from the state-space might give a batch with very few trajectories that reach
the goal and hence it is more likely that they all come from one side of the goal. In this case, the
algorithm will update the policy to go in the same direction from everywhere, wrongly extrapolating
from these very few successful trajectories it received. This is less likely to happen if the trajectories
for the batch are collected with a different initial state distribution that concentrates more uniformly
around the goal, as the better learning progress of the other curves show.
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