
Combining 3D Shape, Color, and Motion for
Robust Anytime Tracking
Supplementary Material

I. PROBABILISTIC MODEL

A. State Space

Below we describe, in more detail, the probabilistic model
that we use for tracking. The state variable xt is defined as
xt = (xt,p, ẋt), where xt,p is the linear position and ẋt is the
velocity of the tracked object. Because we are interested in
tracking to estimate the motion of objects, the position state
variable xt,p measures the change in position relative to the last
observation. To achieve this, after each observation, we set the
origin of the coordinate system to be located at the centroid of
the previous observation, as shown in Supplementary Figure 1.
The position state variable thus measures how far this object
has moved since the previous observation.Velocity)Es,ma,on)

t" t#1"

Xt)

Supplementary Figure 1. The coordinate system for our state space. On the
right is the tracked object observed at time t-1, and on the left is the new
observation at time t. At each time step, we place the origin of our coordinate
system on the center of the previous observation.

We assume that the rotational velocity of the tracked object
is small relative to the frame rate of the sensor. This is often
the case for people, bikes, and cars moving in urban settings.
Thus, the rotational velocity is not included in the state. If
one is interested in estimating the rotational velocity, then
after obtaining the posterior over translation one can optionally
search for the optimal rotation.

Our model is general and can be used to track objects
moving in three dimensions. However, objects that we are
interested in (people, bikes, and cars) are confined to move
along the ground surface. Thus, to speed up our method, we
assume that tracked objects exhibit minimal vertical motion
within the frame rate of the sensor. Our state space thus only
models motion along the ground surface. This assumption
results in a significant speedup of our method, with minimal
effect on the accuracy.

For settings in which one wants to track objects moving
vertically, one can append the vertical dimension to the state
space, resulting in a slightly slower method. Alternatively, one
can incorporate an elevation map to predict vertical motion
due to elevation changes. Another possibility is to divide the
state space into a 2D projection onto the ground and a 1D
projection onto the vertical axis. One can then track objects
separately in each of these projected spaces, as in Held et al.
[3]. In our experiments, the resulting method is very fast but
loses some accuracy due to the projection.

B. Dynamic Bayesian Network

The Dynamic Bayesian Network upon which our model
is built is shown in Supplementary Figure 2. In our model,
we have added a latent surface variable st, which corre-
sponds to a set of points sampled from the visible surface
of the tracked object. Without this term, the measurement
zt would be independent of the previous measurement zt−1
conditioned on the state xt. Such a statement is false if our
measurement includes the 3D shape of a tracked object, which
stays relatively consistent from one time step to the next.
Indeed, this independence assumption would prevent us from
comparing 3D measurements of current and past observations
for tracking. To enable us to incorporate the 3D shape of
objects into our tracker, we add a variable st that represents
the latent surface of the tracked object.

!"#
$%

&"#
$%

'"#$%

!"#$%

&"#$%

'"#(%

!"#(%

&"#(%

'"#
$%

!"#
$%

&"#
$%

'"%

!"%

&"%

'")(%

!")(%

&")(%

*"+",%

-,+&./,0,1"%
234&,/5,67%

*./8+9,%:;<1"&%

Supplementary Figure 2. Dynamic Bayesian Network representing our model
for a tracked object.

The latent surface variable is related to similar notions
from previous work. For example, Petrovskaya and Thrun [6]
include a geometry variable in which they model objects as
2D rectangles and estimate their width and length. SLAM
systems use a similar variable to represent the environment
map [8]. Both of these methods attempt to explicitly model
the geometry of the tracked object or environment. In contrast,

we do not wish to explicitly model the object’s shape, but
rather we will integrate over shapes and focus on estimating
the target object’s velocity.

We represent the latent surface st as a collection of n points
{st,1 . . . st,n} ∈ st sampled from the visible surface of the
tracked object at time t. The prior p(st,i) on these points is
a uniform distribution over the maximum size of a tracked
object. This prior decomposes as a product of the priors for
each point in st, i.e. p(st) =

∏
j p(st,j).

The measurement zt represents the set of n observed points,
{zt,1 . . . zt,n} ∈ zt. Because of sensor noise, the observed
measurements zt will not lie exactly on the object surface and
hence will not be exactly equal to st. The observed points
zt are generated from the latent surface st and the state xt
via the following procedure: for each latent surface point st,i,
Gaussian noise is added based on the sensor resolution Σe

to create a noisy point s̃t,j . The point s̃t,j is now shifted
according to the current object position xt,p to generate the
measurement zt,j at the appropriate location. Thus, we can
write that

zt,j ∼ N (st,j ,Σe) + xt,p. (1)

As stated previously and shown in Supplementary Figure 1,
the previous measurements zt−1 are centered on the origin
of the coordinate system. The points in zt−1 are noisy ob-
servations of the previous surface st−1. Thus for each point
zt−1,i ∈ zt−1 from the previous observation, we have that

zt−1,i ∼ N (st−1,i,Σe). (2)

This creates an additional conditional independence assump-
tion which is not encoded in the graphical model from
Supplementary Figure 2, namely that

p(zt−1 | xt, st−1) = p(zt−1 | st−1). (3)

The term p(st, | st−1) represents the probability of sampling
points st from the currently visible object surface given the
previously sampled points st−1. The sampled points may have
changed due to occlusions, viewpoint changes, deformations,
and random sampling. We suppose that every point st,j ∈ st
could have either been generated from a previously visible
portion of the object surface at time t−1 or from a previously
occluded portion. If p(V) represents the prior probability of
sampling from a previously visible surface, then we can write:

p(st,j | st−1) =p(V) p(st,j | st−1, V) +

p(¬V) p(st,j | st−1,¬V) (4)

We model p(st,j | st−1, V) as a Gaussian, st,j ∼
N (st−1,i,Σr) where Σr models the variance resulting from
the sensor resolution as well as from object deformations,
and st−1,i is the nearest corresponding (latent) surface point
from the previous frame. The sensor resolution changes as a
function of distance, and Σr is computed accordingly for each
tracked object.

The term p(st,j | st−1,¬V) represents the probability that
st,j is generated given that the surface from which it is

sampled was previously occluded. If we have an occlusion
model for the previous frame, we can use this model to
compute this probability. Otherwise, we can assume that any
region that was not previously visible was previously occluded.
We can generically write this as

p(st,j | st−1,¬V) = k1 (k2 − p(st,j | st−1, V))

for some constants k1 and k2. We can now simplify equation 4
as

p(st,j | st−1) = η (p(st,j | st−1, V) + k) (5)

where η is a normalization constant and k acts as a smoothing
factor, and

η = p(V)− p(¬V)k1

k = p(¬V)k1k2/η.

The sampling process is illustrated in Supplementary Figure 3.

st-1

zt

st

zt-1

Supplementary Figure 3. Illustration of the sampling of surface points st and
measurement points zt. Because of sensor noise, the measurements zt will
not lie exactly on the surface. Furthermore, because of occlusions, changes
in viewpoint, deformations, and random sampling, the visible surface points
change from st−1 to st.

II. TRACKING

We now describe how we use the Dynamic Bayesian Net-
work described in Supplementary Section I-B to track moving
objects and estimate their velocity. Our goal is to estimate
p(xt | z1 . . . zt), the probability of the state xt given the past
observations. Using Bayes rule, we can rewrite this as

p(xt | z1 . . . zt) = η p(zt | xt, z1 . . . zt−1) p(xt | z1 . . . zt−1)
(6)

where η is a normalization constant. The first term is our mea-
surement model. In the standard Bayes filter algorithm [8], one
would use conditional independence assumptions to simplify
this as

p(zt | xt, z1 . . . zt−1) = p(zt | xt).

However, in our case the latent variables s1, . . . st prevent
us from making this simplification. Because all observations
come from the same object surface, they cannot be considered

independent of each other. Therefore, we make a slightly
different approximation:

p(zt | xt, z1 . . . zt−1) ≈ p(zt | xt, zt−1) (7)

Intuitively, the current observation is most strongly affected
by the previous observation, rather than the entire past history
of observations. Although tracking could be improved by
using the entire past history of observations, this would add a
computational cost that we wish to avoid. The second term in
equation 6 is obtained from our motion model, which will be
described in Section II-C.

A. Measurement Model Derivation

We now derive the measurement model, using the Dynamic
Bayes Net from Supplementary Figure 2. We can first write
equation 7 using the joint distribution as

p(zt | xt, zt−1) =

∫
p(zt, st | xt, zt−1) dst

=

∫
p(zt | st, xt) p(st | xt, zt−1) dst (8)

where we have used the chain rule of probability and the
conditional independence assumptions from the model of
Figure 2. The second term inside the integral can be further
expanded as

p(st | xt, zt−1) =

∫
p(st, st−1 | xt, zt−1) dst−1 (9)

Using independence assumptions from Supplementary Fig-
ure 2 as well as the independence assumption from equation 3,
we can further expand the term inside this integral as

p(st, st−1 | xt, zt−1) = p(st | st−1) p(st−1 | xt, zt−1)

= η p(st | st−1) p(zt−1 | xt, st−1) p(st−1)

= η p(st | st−1) p(zt−1 | st−1) p(st−1)
(10)

where η is a normalization constant. The term p(st−1) is
a constant and can thus be absorbed by the normalization
constant η. The next two terms are given by equations 2 and 5,

p(zt−1 | st−1) = N (zt−1; st−1,Σe)

p(st | st−1) = η (N (st; st−1,Σr) + k)

where η is a normalization constant and k is a smoothing term.
We can now evaluate the integral in equation 9 to get

p(st | xt, zt−1) = η (N (st; zt−1,Σr + Σe) + k)

We have used the fact that the convolution of two Gaussians
is another Gaussian, following the standard derivation as
in Thrun et al. [8]. We also have from before that

p(zt | st, xt) = N (zt; st + xp,t,Σe).

We can now evaluate the integral of equation 8 to get

p(zt | xt, zt−1) = η (N (zt; zt−1 + xp,t,Σr + 2Σe) + k),

again using the fact that the convolution of two Gaussians is
another Gaussian.

To compute the measurement model in practice, let z̄t−1 =
zt−1 +xp,t; in other words, let z̄t−1 be the points zt−1 shifted
by the position variable in the state xt. Then, for each point
zj ∈ zt, let z̄i be the closest corresponding point in z̄t−1. We
then compute the measurement model probability as

p(zt | xt, zt−1)

= η

 ∏
zj∈zt

exp

(
−1

2
(zj − z̄i)T Σ−1(zj − z̄i)

)
+ k

 (11)

where Σ is given by Σ = 2Σe + Σr.

B. Tracking with color

We will now describe in more detail how to compute
the measurement model p(zt | xt, zt−1) when incorporating
color information. Our laser-based motion tracking algorithm
naturally lends itself to augmentation with simultaneous data
from a traditional 2D video camera. To leverage color in our
probabilistic model, we learn the probability distribution over
color for correctly aligned points. To do so, we build a large
dataset of correspondences (with a 5 cm maximum distance)
between colored laser returns from one laser spin and each of
their spatially nearest points from the subsequent spin, aligned
using our recorded ego motion. An example visualization of
tracking a single point is shown on our project page at http:
//stanford.edu/∼davheld/anytime tracking.html. By observing
how the color of this point changes as we move past it, we
can learn a probability distribution for color changes over a
single frame.

We build a normalized histogram of the differences in color
values between each point and its closest neighbor from the
next spin. The difference histogram we obtain is shown in
Supplementary Figure 4. The distribution closely follows a
Laplacian distribution, as expected [4, 7, 5].

0 50 100 150 200 2500

0.02

0.04

0.06

0.08

Delta color value

Pr
ob

ab
ilit

y

Supplementary Figure 4. The probability that the color of a point will change
by some amount over one frame.

In theory, we could incorporate multiple color channels into
our model. However, such a model would require us to learn
the covariances between different color channels. Instead, we
simplify the model by incorporating just a single color channel

http://stanford.edu/~davheld/anytime_tracking.html
http://stanford.edu/~davheld/anytime_tracking.html

(blue), chosen using a hold-out validation set. Although adding
other color channels could provide additional benefit, we show
improved tracking performance with just one color channel
alone.

We can now incorporate the chosen color distribution into
the measurement model derived in Section II-A. The term
p(st,j | st−1, V) from equation 4 represents the probability
of sampling point st,j given that the surface from which it is
sampled was previously visible at time t− 1. We now expand
this term as

p(st,j | st−1, V) = ps(st,j | st−1, V) pc(st,j | st−1, V) (12)

where ps(st,j | st−1, V) represents the probability based on
the spatial match with the points in st−1, and pc(st,j | st−1, V)
represents the probability based on the color match with
the points in st−1. As before, we model the spatial match
probability as ps(st,j | st−1, V) = N (st,j ; st−1,i,Σr), where
Σr models the variance resulting from the sensor resolution
as well as from object deformations and st−1,i is the nearest
corresponding (latent) surface point from the previous frame.

For the color match probability, we consider that, due to
changes in lighting, lens flare, or many other unmodeled
causes, the observed color can change drastically between
two frames. We thus propose that there is some probability
p(¬C) that all of the the observed colors will change in a
way that is not modeled by the learned color distribution from
Supplementary Figure 4. We can then write the color match
probability from equation 12 as

pc(st,j | st−1, V) =p(C) pc(st,j | st−1, V, C) +

p(¬C) pc(st,j | st−1, V,¬C) (13)

where pc(st,j | st−1, V, C) is the learned color model dis-
tribution from Supplementary Figure 4 (parameterized as a
Laplacian) and pc(st,j | st−1, V,¬C) = 1/255 is the proba-
bility of a point having a given color, given that the color does
not match to that of a nearby point from the previous frame.

The parameter p(C), the probability that the color should
match between two aligned points, must be chosen with care.
Some thought reveals that, when we are coarsely sampling
the state space, we do not expect the colors to match very
well. Therefore, we set p(C) to be a function of the sampling
resolution, as

p(C) = pc exp

(
−r2

2σ2
c

)
(14)

where r is the sampling resolution and σc is a parameter
that controls the rate at which p(C) decreases with increasing
resolution. Thus, when we are sampling coarsely, we get a
smaller value for p(C), meaning we do not expect the colors to
match at such a coarse resolution. As we sample more finely,
p(C) increases until p(C) = pc when r = 0, so that we
expect the colors to match more precisely at a finer sampling
resolution.

In practice, we compute the measurement model incorpo-
rating color as follows: As before, let z̄t−1 = zt−1 + xp,t; in

other words, let z̄t−1 be the points zt−1 shifted by the position
variable in the state xt. Then, for each point zj ∈ zt, let z̄i
be the closest corresponding point in z̄t−1. For each point, we
compute the spatial probability as

ps(zj | xt, zt−1) = exp

(
−1

2
(zj − z̄i)T Σ−1(zj − z̄i)

)
We then compute the color probability as

pc(zj | xt, zt−1, V) =p(C) pc(zj | z̄i, V, C) +

p(¬C) pc(zj | z̄i, V,¬C)

where p(C) is given by equation 14, pc(zj | z̄i, V, C) is
given by the the learned color model distribution from Sup-
plementary Figure 4 (parameterized as a Laplacian), p(¬C) =
1−p(C), and pc(zj | z̄i, V,¬C) = 1/255. Finally, we compute
the total measurement probability as

p(zt | xt, zt−1) =η

(∏
zj∈zt

ps(zj | xt, zt−1) pc(zj | xt, zt−1, V) +

k3
(
k4 − ps(zj | xt, zt−1)

))
where k3 can be computed from k in equation 11 as k3 =
k/(k + 1). The parameter k4 is a smoothing parameter that
must be chosen via cross-validation, and in our case we set it
to 1.

C. Motion Model

To build the motion model, we take all of the values for
p(xt | z1 . . . zt) from the previous frame and fit a multi-
variate Gaussian to the set of probabilities. We compute the
mean µt and covariance Σt by by weighting each state by its
probability, as

µt =
∑
i

p(xt,i | z1 . . . zt)xt,i

Σt =
∑
i

p(xt,i | z1 . . . zt)(xt,i − µt)
T (xt,i − µt)

where xt,i is the state vector. Once a Gaussian over the
posterior is obtained, the result is used in the standard constant
velocity model of a Kalman filter. This is a standard method, so
we refer the reader to a basic text on the subject for details [8].

III. RESULTS

Here we provide some additional results and analysis of our
method. First, when searching over alignments, we expand all
cells whose probability exceeds a minimum threshold Pmin. If
we were to instead only expand the single highest probability
cell on each step, our RMS error would increase by 23.5%.

In order to better understand the performance of our tracker,
we evaluate how the performance varies as a function of
the number of points observed by our 3D sensor on the
tracked object. The results are shown in Supplementary Fig-
ure 5. As shown, the RMS error decreases as the number of
tracked points increases, and our ADH tracker outperforms
the centroid-based Kalman filter baseline for any number of

points. The two methods have the similar performance when
the number of points is small, since the ADH Tracker cannot
take advantage of the 3D shape when there are not many
visible points on the tracked object. As the number of visible
points increases, the ADH Tracker is able to increase its
tracking accuracy. The accuracy of the Kalman filter also
improves as the number of points increases, probably due to
the decreased occlusions for close objects which also have a
large number of points. The difference in performance between
the two methods shows the benefit of using the full 3D shape
for varying numbers of observed points on the tracked object.

0 200 400 600 8000

0.5

1

1.5

Number of points

R
M

S
er

ro
r (

m
/s

)

Kalman Filter
ADH Tracker (Ours)

Supplementary Figure 5. RMS Error as a function of the number of points
for each tracked object.

We can similarly compute the RMS error as a function of
the distance to the tracked object, shown in Supplementary
Figure 6. As before, for distant objects when the observed
point cloud is very sparse, our method performs similarly to
the centroid-based Kalman filter. As the distance to the tracked
object decreases, the observed point cloud becomes more
dense and our RMS error decreases relative to the Kalman
filter.

These two charts also can be used to predict the RMS
error for tracked objects at different distances. For example,
Supplementary Figure 6 shows that our RMS error is 0.15 m/s
for close objects, and our error increases as the distance to the
tracked object increases and as the number of observed points
decreases.

Although it may appear from Figure 6 in our paper that
our accuracy saturates after 1 ms, the results in this figure
are averaged over 515 tracked vehicles, and distant cars are
too sparse to benefit much from sampling our state space
at a higher resolution. However, we do see a benefit from
increased sampling when tracking nearby cars. For example,
Supplementary Figure 7 shows the runtime vs accuracy for
objects that are within 5 m from the ego vehicle. It is clear
from this figure that the accuracy of our method continues to
improve as the method is run for longer. A user can thus tune
the desired runtime or tracking accuracy for each object based

0 20 40 600
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Distance to tracked vehicle (m)

R
M

S
er

ro
r (

m
/s

)

Kalman Filter
ADH Tracker (Ours)

Supplementary Figure 6. RMS Error as a function of the distance to each
tracked object.

on the needs of the system.

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

Mean runtime (ms)

R
M

S
er

ro
r (

m
/s

)

Supplementary Figure 7. RMS Error vs runtime for objects that are within 5
m of the ego vehicle. Note that when the method is allowed to have a longer
runtime, the accuracy continues to decrease.

Because of our motion model, we would expect the error
of our method to decrease as the number of frames that we
have seen an object increases, as we get a better estimate of
the prior motion of the tracked object. This effect is shown in
Supplementary Figure 8. This figure indicates that our error
is very large when we have only seen an object for 5 or less
frames. One reason for this is that, before we have observed
5 frames, we do not yet have a good estimate of the tracked
object’s past motion. However, after observing an object for
more than 5 frames, our motion model can be used to place
a prior on the motion, thus reducing our error. Additionally,
when first observing an object, the object may initially be
mostly occluded. After 5 frames, the more of the object may
be visible, leading to better tracking.

0 100 200 3000

0.5

1

1.5

2

Number of frames tracked

R
M

S
er

ro
r (

m
/s

)

Supplementary Figure 8. RMS Error as a function of the number of frames
seen so far for each tracked object.

We can disambiguate these effects by looking at Supple-
mentary Figure 9, in which we show the result of our method
with and without the use of a motion model. When a motion
model is not used, the only benefit of tracking an object for
more frames is that more of the object will be visible than
when the object is first observed. The difference between the
two curves shows the benefit of using a motion model as
the number of frames increases. As expected, for the first
frame, the performance of the two methods is identical. After
a few frames are observed, the tracker with a motion model
significantly outperforms the version without a motion model.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

Number of frames tracked

R
M

S
er

ro
r (

m
/s

)

ADH Tracker
ADH Tracker without motion model

Supplementary Figure 9. RMS Error as a function of the number of frames
seen so far for each tracked object. We compare using our method both with
and without a motion model. Here we cut off the graph at a maximum of 30
frames in order to more closely see the effect when only a small number of
frames is visible.

We can understand the effect of different components of
our system by looking at Supplementary Figure 10. The full

method is shown as a black line on the figure, combining 3D
shape, color, and a motion model for an RMS error of 0.52
m/s (on average across 515 tracked vehicles). Removing color
causes the error to increase by 7.6% to 0.56 m/s. Removing
the motion model causes the error to increase by 32.2% to
0.69 m/s. Removing the 3D shape (by using a centroid-based
Kalman filter) causes the error to increase by 59.5% to 0.83
m/s. Thus, using the full 3D shape for tracking is crucial for
accurate tracking.

No color No motion model No 3D shape0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M

S
er

ro
r (

m
/s

)

Supplementary Figure 10. RMS Error as a function of the distance to each
tracked object.

It is interesting to compare the performance of our method
to that of a radar, which can also be used to measure velocity
of moving objects. The Bosch LLR3 Radar can estimate
velocities to within 0.12 m/s [1]. However, radar only estimates
velocity in a single dimension: in the direction from the radar
to the tracked object. This one-dimensional estimate is not
useful for robotics or autonomous driving, in which we need
a 2D estimate of the velocity of each moving object to estimate
where each object is moving. Our method returns a 2D velocity
estimate, and by searching over vertical motion and over
rotation can be made to return a 6D velocity estimate.

We can also analyze the different sources of error of our
evaluation method, which attempts to measure how accurately
we are estimating the velocity of different objects. First, by
running SLAM on our dataset, we can show that our position
estimate has an RMS error of 1.5 mm. Because our sensor has
a framerate of 10 Hz, this equates to a velocity error of 0.015
m/s. Thus, our position error can account for less than 3% of
the error of our method, which has an RMS error of 0.52 m/s
when using color. The Velodyne Lidar, on the other hand, has
reported errors of less than 2 cm, which would account for
3.8% of our total error [2]. We further note that our velocity
estimates are averaged across 515 tracked objects and 31,994
separate frames. The standard error of our velocity estimates is
0.003 m/s, computed as SE = s/

√
n, where s is the standard

deviation and n is the number of samples, indicating that our

RMS estimates are stable.
By looking at the mean velocity error, we can determine if

there is a bias in our velocity estimates. When tracking using
color, our mean velocity error is -0.03 m/s, which is 5.6%
of our total error. A completely unbiased tracker would have
a mean velocity error of 0, when averaged over an infinite
number of tracked objects. Based on the error analysis above,
we conclude that, if our method is biased, the bias is relatively
small. A bias, if present, can come from our method or it could
come from correlated data in our dataset.

It is also interesting to compare the error of our method to
the half-resolution of our sensor. The resolution of our sensor
decreases as the distance to the tracked object increases. We
define the resolution to be the horizontal spacing between
sensor measurements at a given distance. We can see the
half-resolution of our sensor in Supplementary Figure 11. We
see from this figure that, within 50 m, our accuracy nearly
matches the half-resolution of the sensor. Of course, by using
a motion model, we can potentially improve our accuracy
below the half-resolution for objects that maintain a constant
velocity. However, for objects that change their velocity in
unpredictable ways, the half-resolution represents a limit on
the potential accuracy of our method when using the 3D Lidar
for tracking.

0 20 40 600
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Distance to tracked vehicle (m)

R
M

S
er

ro
r (

m
/s

)

ADH Tracker (Ours)
Velodyne half−resolution

Supplementary Figure 11. RMS Error as a function of the distance to each
tracked object, when tracking with color. We also show the half-resolution of
our 3D sensor.

We can further understand the performance of our tracker by
building object models using the velocity estimates produced
by our tracker, and then evaluating the crispness of these
models. This procedure is described in Section VIII-C of the
paper. We can plot these crispness scores as a function of
the object type, shown in Supplementary Figure 12. From this
figure, we see that, although the Kalman ICP method performs
well for cars, it performs poorly for people and bikes. This is
likely due to the shape of people and bikes. Because cars have
a smooth, convex shape, ICP is able is more easily find the
optimal alignment. On the other hand, people and bikes do not

have well-defined faces, and bikes have many local optima,
leading ICP to get stuck in a local optimum and result in a
poor alignment.Quan#ta#ve'Evalua#on'2'

People Bikes Cars0

0.1

0.2

0.3

0.4

C
ris
pn
es
s

People Bikes Cars0

5

10

Cr
isp

ne
ss

Kalman Filter
Kalman ICP
ADH Tracker (Ours)

Supplementary Figure 12. Crispness of models built using our tracker,
compared to models built using the baseline methods.

REFERENCES

[1] Chassis systems control lrr3: 3rd generation
long-range radar sensor. URL http://www.
bosch-automotivetechnology.com/media/db application/
downloads/pdf/safety 1/en 4/lrr3 datenblatt de 2009.
pdf.

[2] Velodyne lidar hdl-64e datasheet. URL
http://velodynelidar.com/lidar/products/brochure/
HDL-64E%20S2%20datasheet 2010 lowres.pdf.

[3] David Held, Jesse Levinson, and Sebastian Thrun. Pre-
cision tracking with sparse 3d and dense color 2d data.
In International Conference on Robotics and Automation
(ICRA), 2013.

[4] Jinggang Huang and David Mumford. Statistics of natural
images and models. In Computer Vision and Pattern
Recognition, 1999. IEEE Computer Society Conference
on., volume 1. IEEE, 1999.

[5] David Odom and Peyman Milanfar. Modeling multiscale
differential pixel statistics. In Electronic Imaging 2006,
pages 606504–606504. International Society for Optics
and Photonics, 2006.

[6] Anna Petrovskaya and Sebastian Thrun. Model based
vehicle tracking for autonomous driving in urban envi-
ronments. Proceedings of Robotics: Science and Systems
IV, Zurich, Switzerland, 34, 2008.

[7] Jian Sun, Zongben Xu, and Heung-Yeung Shum. Image
super-resolution using gradient profile prior. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8. IEEE, 2008.

[8] Sebastian Thrun, Wolfram Burgard, Dieter Fox, et al.
Probabilistic robotics, volume 1. MIT press Cambridge,
2005.

http://www.bosch-automotivetechnology.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf
http://www.bosch-automotivetechnology.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf
http://www.bosch-automotivetechnology.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf
http://www.bosch-automotivetechnology.com/media/db_application/downloads/pdf/safety_1/en_4/lrr3_datenblatt_de_2009.pdf
http://velodynelidar.com/lidar/products/brochure/HDL-64E%20S2%20datasheet_2010_lowres.pdf
http://velodynelidar.com/lidar/products/brochure/HDL-64E%20S2%20datasheet_2010_lowres.pdf

	Probabilistic Model
	State Space
	Dynamic Bayesian Network

	Tracking
	Measurement Model Derivation
	Tracking with color
	Motion Model

	Results

